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In this paper we study the gravitational effects induced by the quantum fluctuations of
the energy–momentum tensor of scalar fields. Our treatment is based on the two-point
correlation function of this operator. In a largeN limit, this treatment constitutes the
next contribution after the semiclassical treatment. The specific example we study are
the gravitational interactions between outgoing configurations giving rise to Hawking
radiation and in-falling configurations. Even when the latter are in vacuum state, the
interactions grow boundlessly upon approaching the horizon. Their main effect is to
wash out the trans-Planckian correlations which existed in a given background geometry.
When evaluated in the lowest order, these interactions express themselves in terms of
a stochastic ensemble of metric fluctuations. The propagation of Hawking radiation in
this ensemble resembles that of sound propagation in a random medium. The analogies
with acoustic black holes are manifest even though certain features differ.

1. OVERVIEW

This paper reports on work in progress. We therefore wish to apologize for
the lack of clarity and/or completeness which might be found in several places.
Our aim is to describe the effects of the gravitational interactions occurring in
vacuum. This requires to take into account the quantum fluctuations of the energy
momentum tensor of matter fields. This will be done approximatively through the
two-point function of the energy–momentum,〈Tµν(x)Tαβ(x′)〉. We shall show that
this treatment is the natural extension of the semiclassical approximation wherein
only the one-point function, the expectation value〈Tµν(x)〉, is used in Einstein’s
equations.

When applied to the Hawking radiation, the main virtue of this extension is
to wash out the trans-Planckian correlations which existed in the semiclassical
treatment without affecting the asymptotic properties of Hawking radiation. More
precisely we shall obtain the following results.
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(I) When propagated backwards in time, outgoing quanta are scattered by
the metric fluctuations induced by in-falling matter fields in their vacuum
state.

(II) These interactions grow so strongly near the horizon that these outgoing
quanta are completely scattered. That is, their state becomes completely
entangled to that of in-falling configurations.

(III) The in-falling vacuum fluctuations act as a reservoir of modes. This
allows for a description of the interactions in terms of a stochastic en-
semble of metric fluctuations.

(IV) Even though the spectrum of the latter contains all frequencies (up to
a UV cutoff ), their impact on outgoing configurations is governed by
frequenciesω ' κ whereκ is the surface gravity of the hole.

(V) The stationarity of vacuum (i.e., the fact that the Green function is a
function of the differencet − t ′ only) leads to stationary metric fluc-
tuations and this, combined with the stationarity of the background
metric, gives an effective spread to the horizon which is independent
of t .

2. INTRODUCTION

In his original derivation, Hawking (1975) considered the propagation of the
radiation in agivenbackground metric, that of a collapsing star. This means that
the metric is once for all determined by the energy of the collapsing star and is
therefore unaffected by the quantum processes under examination. In this approxi-
mation, the radiation field satisfies a linear equation (in the absence of matter
interactions). One then finds that the in-falling and outgoing field configurations
are completelyuncorrelatednear the black hole horizon. In fact the pairs of quanta
generated by its formation are composed of two outgoing quanta, one of each
side of it. The external ones form the asymptotic flux whereas their partners fall
towards the singularity atr = 0. Upon tracing over these inner configurations one
gets an outgoing incoherent flux described by a thermal density matrix. There
is nevertheless a precise relationship between the expectation values of the in-
falling and the outgoing energy fluxes. Indeed, the asymptotic outgoing null2 flux
〈Tuu(r = ∞)〉 is accompanied by a negative in-falling flux〈Tvv〉 which has, on
the horizonr = 2M , exactly the opposite value when one works, as we shall do,
in the vacuum, that is,〈Tvv(r = ∞)〉 = 0. This follows from the conservation of
the radial flux〈Tuu(r )〉 − 〈Tvv(r )〉 in the static metric outside the collapsing body
as well as from the fact that〈Tuu〉 vanishes like (r − 2M)2 when approaching the
future horizon (Davieset al., 1976).

2 The null coordinatesv andu are given byv = t + r ∗, u = t − r ∗, andr ∗ = r + 2M ln(r/2M − 1)
is the tortoise coordinate.
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This last property becomes crucial when considering the backreaction due
these mean fluxes (i.e., the metric change determined by Einstein’s equations
driven by〈Tµν〉). Let us first describe what happens at spatial infinity. There, energy
conservation and the hypothesis of adiabaticity,3 that is,dM/dt¿ 1, imply that,
in vacuum, the mass loss will be determined by〈Tuu(r = ∞)〉, thereby describing
a geometry characterized by a decreasing Bondi mass. However, to validate the
hypothesis of adiabaticity, a local analysis of the evaporating black hole geometry
is required. In this analysis, the vanishing of〈Tuu〉 nearr = 2M is crucial. Indeed
it is a necessary condition for keeping the regularity of the near horizon geometry
during the evaporation process (Barden, 1981; Broutet al., 1995a; Massar, 1995;
Parentani and Piran, 1994). Concomitantly, one finds that it is the negative〈Tvv〉
which drives locally (i.e.,|r − 2M | ¿ 2M) the shrinking of the horizon area
according to

dM

dv
= 〈Tvv〉|r=rhorizon=2M ' − 1

M2
. (1)

In this equationM(v) is the function which determines the time dependent location
of the apparent horizon and which governs the Vaidya metric

ds2 = −
(

1− 2M(v)

r

)
dv2+ 2dv dr+ r 2(dθ2+ sin2 θ dφ2). (2)

In brief, the important (and nontrivial) point is that (2) offers a good approximation
of the near horizon geometry precisely because of the regularity of the geometry
which is preserved by the vanishing of〈Tuu(r = 2M)〉.

Being regular, this description (known as the semiclassical scenario, a rather
imprecise denomination which nevertheless indicates that only mean fluxes are
taken into account) would be perfectly valid if another feature of black hole physics
wasn’t present, namely the field configurations giving rise to Hawking quanta pos-
sess arbitrary high (trans-Planckian) frequencies near the horizon: when measured
by in-falling observers atr , the frequency grows as

ω ∝ λ

1− 2M/r
(3)

whereλ is the asymptotic energy of the quantum. This implies that a wave packet
centered along the null outgoing geodesicu = t − r ∗ had a frequencyω ∝ λ eκu

when it emerged from the collapsing star. (κ = 1/4M is the surface gravity and
fixes Hawking temperatureTH = κ/2π .) Unlike processes characterized by a typ-
ical energy scale, the relationω ∝ λ eκu shows that black hole evaporation rests
on arbitrary high frequencies. This analysis of wave packets is confirmed by the
study of (nondiagonal) matrix elements ofTµν . As shown in Massar and Parentani
(1996), contrary to the expectation value (the diagonal part) which is regular and

3 We work with in Planck units:c = h = MPlanck= 1.
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of the order ofM−4, these matrix elements are generically singular on the hori-
zon, that is, their Fourier content is characterized by frequenciesω which grow
according to (3).

As emphasized by ’t Hooft (1985), this implies that the gravitational inter-
actions between the configurations giving rise to Hawking quanta and in-falling
quanta cannot be neglected, thereby questioning the validity of the semiclassical
description. In questioning this validity, two issues should be distinguished, see
Section 3.7 in Broutet al.(1995a). First, there is the question of the low frequency
O(κ) changes which can be measured asymptotically, and second, that of the high
frequency modifications of the near horizon physics. Since all thermodynamical
reasonings indicate that the asymptotic properties (namely thermality governed by
κ and stationarity) should be preserved, the problem is to conciliate their stability
with the radical change of the near horizon physics which is needed to cure the
trans-Planckian problem. Indeed, a perturbative analysis (Parentani, 1999) indi-
cates that near horizon interactions lead to recoil effects which grow likeω in (3).
This seems incompatible with the stationarity of the flux.

A new point of view to this problem is provided by the analogy with condensed
matter physics pointed out by Unruh (1981) (and revisited by Jacobson (1991,
1993). He noticed that sound propagation in a moving fluid obeys a d’Alembertian
equation which defines an acoustic metric. Therefore, when the acoustic metric
corresponds to that of a collapsing star thermally distributed phonons should be
emitted. However, contrary to photons the dispersion relation of phonons is not lin-
ear for frequencies (measured in the rest frame of the fluid) higher than a criticalωc.
Nevertheless, whenωcÀ κ, Unruh (1995) showed that the asymptotic properties
of Hawking phonons are unaffected, and this in spite of the fact that frequencies
ω > ωc which were solicited in Hawking’s derivation are no longer available. It
should also be stressed that the near horizon propagation of the phonon field is
very sensitive to the modification of the dispersion relation and drastically differs
from that of photons (Broutet al., 1995b; Jacobson, 1996). In brief, the appealing
feature of these models is to provide at once, an explanation (in terms of adia-
baticity (which essentially follows from scale separationωcÀ κ, Niemeyer and
Parentani, n.d.)) for the stability of the asymptotic properties of the flux, and a sim-
ple physical reason (a modified dispersion relation) which eradicates the ultrahigh
frequencies.

This is so nice that it strongly suggests that something similar might apply
to black holes and solve their trans-Planckian problem. The question is to identify
what plays the role of the microscopic constituents of the fluid which introduce,
through their interactions, the nontrivial dispersion relation and the cutoffωc. As
pointed out in Broutet al. (1995a) and Jacobson (1996), the natural candidate for
this job are thenonlinearitiesinduced by gravitational interactions. The main prob-
lem one faces is to evaluate the consequences of these interactions. And then, one
can offer oneself the luxury to make contact with dumb holes physics by analyzing
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if/why these effects can be incorporated in a nontrivial dispersion relation, that is,
in the linear equation governing outgoing radiation.

To answer these two questions clearly requires to go beyond the semiclassical
treatment, that is, to take into account the gravitational response due to higher mo-
ments ofTµν(x) and not only the classical response driven by the mean〈Tµν(x)〉
as in the semiclassical scenario. As a first step towards a full quantum gravita-
tional treatment, we proposed (Parentani, in press) (inspired by Barrab`eset al.,
2000; Broutet al., 1995a; Casheret al., 1997; Hu and Shiokawa, 1998; Kiem and
Verlinde, 1995; Martin and Verdaguer, 2000; Massar and Parentani, 1996) to an-
alyze the gravitational effects driven by the two-point function〈Tµν(x)Tαβ(x′)〉
still evaluated in the unperturbed vacuum state. This Gaussian treatment gives the
lowest order description of the gravitational interactions between outgoing con-
figurations giving rise to Hawking radiation and in-falling vacuum configurations.
These interactions lead to collective effects (as in a dilute gas approximation)
which express themselves in terms of a stochastic ensemble of metric fluctuations.
A simple way to understand this is that the in-falling vacuum configurations (which
contain all frequencies up to a UV cutoff ) act as an environment for the outgoing
quanta. The specification of vacuum state at early times determines the statistical
properties of this ensemble and this in turn fixes the cutoffωc (in terms ofκ) and
the frame which breaks the 2D Lorentz invariance (Jacobson, 1991).4 Then, the
main effect of these interactions is to dissipate the trans-Planckian modes near
the horizon but without affecting the asymptotic properties of Hawking radiation.
Finally, if one wishes, one can represent this dissipation by introducing a phe-
nomenological dispersion relation. The reason is that the dominant gravitational
interactions preserve the linearity of the propagation of outgoing configurations
since the latter are coupled to in-falling configurations and not to themselves.

The unsolved question concerns the range of validity of this Gaussian treat-
ment. This is a complicate question whose final answer requires a better (full?)
understanding of quantum gravity. Let us make a few remarks. First, this question
closely follows that concerning the validity range of the semiclassical treatment
which isequallycomplicate.5 Second, our analysis indicates that the semiclassical

4 In the vicinity of a black hole horizon, there is an induced Lorentz invariance in theu, v plane. This
follows from the fact that near the near horizon the 4D d’Alembertian reduces to∂u∂vφ = 0, see (7),
since the mass term and the centrifugal barrier are multiplied byr − 2M .

5 The validity of the semiclassical treatment has been often questioned in rather general terms. How-
ever, a significant answer requires to find the physical quantities (i.e., matrix elements of operators)
which are erroneously evaluated in this treatmentandto propose improved expressions for the same
quantities in order to see the discrepancy. What is known (Hartle and Horowitz, 1981) is that the
semiclassical treatment is the leading contribution in the largeN limit when consideringN copies
with GN held fixed. The important point for us is that thenextorder contribution, that is, the set
of graphs weighted by powers ofG2N, corresponds to our treatment. ThereforeN is a parameter
which organizes the infinity of graphs into series of infinite nonperturbative (inG) subsets whose
nth member (i.e., containing powers ofGn N) is governed by thenth correlation function ofTµν .
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treatment will fail before the Gaussian treatment. “Before” should be understood
radially, given the blue shift effect encountered during the backward propagation
of final configurations specified onJ +, see (3). What emerges is a kind of Russian
doll structure in which gravity progressively dominates the physics. Far away
from the hole (r − 2M À 2M) one has outgoing thermal (on shell) radiation. In
a first intermediate regime (ω−1

c ¿ r − 2M ¿ 2M) the modes are still governed
by the usual d’Alembertian but observers at fixedr and free falling ones perceive
them differently. In the next regime (ω−1

c ' r − 2M), inside Jacobson’s time-like
boundary (Jacobson, 1993), the outgoing modes get severely entangled to the in-
falling configuration thereby loosing their “mode” quality. As we shall see, this
loss can be described by an effective damping law. Deeper inr , one has some
unknown regime governed by Planckian physics. This physics presumably also
occurs around us but stays well hidden inside its Planckian husk in the absence of
a good microscope.

3. THE MODEL

For simplicity, we shall consider only s-waves propagating in spherically
symmetric space times. As in Barrab`es (2000), we choose the background metric
to be that resulting from the collapse of a null shell of massM0 which propagates
alongv = 0. Inside the shell, forv < 0, the geometry is Minkowski and described
by (2) withM = 0. Outside, the metric is also static and given by (2) withM = M0.
This choice of the collapsing metric will have no influence in what follows since
we shall focus on the vacuum interactions occurring near the horizon.

To identify the various degrees of freedom involved in these interactions, we
first analyze the global properties of the massless s-waves in this background. The
s-waves fall into two classes according to their support onJ −, the light-like past
infinity. The waves in the first class have support only forv < 0 and will be noted
φ−. They propagate inward in the flat geometry tillr = 0 where they bounce off
and become outgoing configurations. This first class is itself divided in two: for
v < −4M , the reflected waves cross the in-falling shell withr > 2M and reach
the asymptotic region6 whereas those for 0> v > −4M cross it withr < 2M
and propagate in the trapped region till the singularity. The separating light ray
vH = −4M becomes the future horizonu = ∞ after bouncing off atr = 0. The

This raises the following question: given the dimensionality ofG = l 2
Planck, can one infer that high

orders inn become relevant only for high (Planckian) energies? We conjecture that this is the case:
the sorting out of graphs in terms ofn is effectively an expansion in the energy of the processes
involved in the matrix element under consideration.

6∂u∂vφ = 0 is valid for all r only when working in the geometric optic approximation. In the ex-
act d’Alembertian, see (7), there is a potential aroundr = 3M which induces partial reflection, a
phenomenon irrelevant for our purposes.
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configurations that form the second class have support only forv > 0 and are noted
φ+. They are always in-falling and cross the horizon toward the singularity.

In Hawking’s derivation of black hole radiation, owing to the linearity of the
field equation, these classical properties also apply in second quantization: the
configurations forv < vH give rise to the asymptotic quanta, those forvH < v < 0
to their partners (Massar and Parentani, 1996) whereasφ+ plays no role in the
asymptotic radiation. One also finds that the correlations between the asymptotic
quanta and their partners follow from the fact that, onJ − and in vacuum, the
rescaled fieldφ =

√
4πr 2χ (whereχ is the 4D s-wave) satisfies

〈φ(v)φ(v′)〉 =
∫ ∞

0

dω

4πω
e−iω(v−v′) = − 1

4π
ln |v − v′|. (4)

Since this equation is valid for allv, v′ there also exist correlations between
φ− andφ+. However, they are physically irrelevant for late Hawking quanta since
these emerge from configurations which are characterized by frequenciesω =
λ eκu À κ and which are localized extremely close tovH. This focusing follows
from the asymptotic (κuÀ 1) behaviour of the relation between the value ofu of
the geodesic which originates fromv onJ −:

V(u)− vH ∝ e−κ1u. (5)

As shown in Hawking (1975), this exponential induces both the thermal radiation
at temperatureκ/2π and the necessity of considering trans-Planckian frequencies
onJ −. In the absence of gravitational interactions, it also tells us thatφ− andφ+
are effectively two independent fields.7

This analysis is confirmed by studying the structure of the Fock space ofφ

propagating in the background (2). In this metric, the action ofφ is

Sg = −
∫

dv dr

[
∂vφ ∂rφ + 1

2

(
1− 2M

r

)
(∂rφ)2

]
(6)

with M(v) = 0 for v < 0 and M(v) = M0 for v > 0. Being interested in the
near horizon physics, we have dropped the quantum potential term of s-waves,
(2M0/r 3)φ2, since it does not affect the near horizon propagation. This can be
seen by using the double null coordinate systemu = v − 2r ∗, v. Using them, the
4D- d’Alembertian reads[

∂v∂v −
(

1− 2M0

r

)(
l (l + 1)

r 2
+ 2M0

r 3

)]
φl = 0 (7)

whereφl is the rescaled mode of angular momentuml . Thus, as emphasized in
Kiem and Verlinde (1995), the propagation of waves (at fixed angular momentum
and even for an arbitrary mass) effectively obeys a 2D conformal invariance in

7 By independent we mean that by sending quanta described by wave packets built withφ+ only, there
is no induced emission (Wald, 1976).
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the near horizon geometry.8 This is confirmed by the fact that, classically, the 2D
trace of 2D part ofTµν vanishesoff-shell. Thus, in our model for s-waves,Tµν has
only two components,Tvv andTuu.

When consideringφ in second quantization, the 2D conformal invariance
implies that the Fock space is a tensorial product of an outgoingu-sector (repre-
sented here byφ−) and an in-fallingv-sector (represented byφ+). This means that
any matrix element ofφ is expressed in terms of matrix elements ofφ− andφ+
which can be evaluated separately. This disconnection into two sectors implies the
vanishing of the connected part of the two-point correlation〈Tvv(x)Tuu(x′)〉c =
〈Tvv(x)Tuu(x′)〉 − 〈Tvv(x)〉〈Tuu(x′)〉 for all factorized states (i.e.,|9〉 = |9+〉 ×
|9−〉). This vanishing means that thefluctuationsof the fluxes around their mean
are uncorrelated. Finally, in spite of this absence of correlation, themeanvalue of
Tvv(x) andTuu are related—through the 2D trace anomaly (Davieset al., 1976) in
the present model—as emphasized in Section 2.

4. THE GRAVITATIONAL INTERACTIONS BETWEEN φ− AND φ+

The aim of this section is to describe the gravitational interactions between
φ− andφ+. In the next section, we shall compute the consequences of these in-
teractions for Hawking radiation. The generating functional governing the matter-
gravity system is

Z =
∫
Dφ Dh ei [Sg+h+Sh,g] . (8)

In this equation,h is the change of the metric with respect to the backgroundg
discussed above andSh,g is the action ofh obtained from the Einstein–Hilbert
action.Sg+h is the action ofφ propagating in the fluctuating geometryg+ h.

When the metric fluctuations are spherically symmetric,h can be charac-
terized by two functionsψ , µ which are completely determined by the energy–
momentum tensor ofφ. The line element in the fluctuating metric can be written
as (Barrab`eset al., 2000)9

ds2 = eψ
[
−
(

1− 2M

r

)
dv2+ 2dv dr

]
+ r 2 dÄ2

2 (9)

8 This invariance leads to the trans-Planckian problem: The steady production rate of outgoing quanta
arises from an integral over in-frequenciesω whose measure is that of a 2D massless field thereby
giving dω/ω = κ du, for more details concerning this equality which follows from (3) see, for
example, Parentani (1999) or Eq. (2.54) in Broutet al. (1995a).

9 This line element differs from that used by Bardeen (1981):ds2 = eψ [−eψ (1− 2M0+ 2µB
r ) dv2 +

2dv dr] + r 2 dÄ2
2. Theψ function is the same whereas, to first order inψ andµB, = µ = µB −

ψ(r − 2M0)/2. The usefulness of our choice is thatψ no longer affects the null geodesics. We recall
that Einstein’s equations read∂vµB = Tvv − Tuu and∂r ∗ψ = 4Tuu/(r − 2M), when expressingTµν
in terms of the two null fluxesTvv, Tuu.
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whereM = M0+ µ(v, r ) for v > 0. In this new metric, the matter action is the
same as in Eq. (6):

Sg+h = −
∫

dv dr

[
∂vφ ∂rφ +

(
1− 2M

r

)
(∂rφ)2

2

]
. (10)

The new mass functionM incorporates the sole change.Sg+h is independent of
ψ , thereby demonstrating the 2D conformal invariance mentioned earlier.

Our aim is to work out the first order corrections due to the gravitational
interactions betweenφ− andφ+. To this end only quadratic terms inh should be
kept inSh,g. The Gaussian integration overh can be performed (this is equivalent
to solve the linearized Einstein’s equations). It gives a self-interacting field theory
described by

Z =
∫
Dφ ei Sg+i Sint (11)

By constructionSint is a quadratic form10 of the energy–momentum tensor ofφ.
To identify the various consequences ofSint it is most useful to exploit the fact

that, when using the free fieldφ, Tµν has only two components, thanks to the 2D
conformal invariance. Thus, in a perturbative treatment (such as in the interacting
picture) one has to deal with two types of interaction terms only. First one has self-
interaction terms depending onφ− or φ+ separately. These terms do not destroy
the factorisability of the theory and will not be considered in what follows.11 One
also has a cross term couplingφ− to φ+. The essential point is that this term will
inevitably breaks the factorisability of the± sectors. Off-shell, the cross term is
given by, see (10),

Sint = G
∫ ∞

0
dr
∫ ∞

0
dv

[
µ+(v, r )

r
(∂rφ−)2+ µ−(v, r )

r
(∂rφ+)2

]
(12)

whereµ±(v, r ) is the mass fluctuation driven byφ± andG is Newton’s constant.
We have introduced it in the front ofµ to read more easily in the equations the

10In the t , r coordinate system, that is, whengrt = 0, Sint is given by the appropriate version (see
Eq. (90) in Massar and Parentani (1996) of the so-called BCMN (Bergeret al., 1972) Hamiltonian.

11When using the free field to evaluate theφ+φ+ contribution toSint, it vanishes on-shell. This can
be understood from the fact that the Vaidya metric (2) is an exact solution for any classical infalling
massless fluxTvv(v). This is confirmed by the fact that the equation of motion ofφ+ is still ∂r φ+ = 0
even in the presence of self-interactions in theφ+ sector. Theφ−φ− contribution toSint is more tricky
to handle in the advanced coordinatesv, r . The reason is that infalling geodesics are affected by the
presence of an outgoing fluxTuu (as clearly seen when using the coordinatesu, r ). This modification
translates inv, r into a deformation of the description of outgoing geodesicsu = u(v, r ) and it is this
effect that is responsible for theφ−φ− contribution toSint. Let us finally notice that a nonperturbative
treatment of the self-interactions ofφ− has been developed in Kraus and Wilczek (1995) and Massar
and Parentani (2000). It leads to small effectsO(κ/M) and induces no damping of the waves when
approaching the horizon.
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order of the interactions betweenφ− andφ+. On-shell one has (∂rφ+)2 = 0 and
(∂rφ−)2 ' (∂vφ−)2/(r/2M − 1)2.

Therefore, the dominant contribution toSint is governed byµ+ evaluated on
the horizon. Whenφ+ is on-shell it is given by

µ+(v) = µ+(v, r )|r=2M =
∫ v

0
dv′ (∂v′φ+)2. (13)

In brief,

Sint = G
∫ ∞

0
dr
∫ ∞

0
dv
µ+(v)

r
(∂rφ−)2 (14)

represents the dominantφ−φ+ interactions mediated by gravity. Similar expres-
sions have been already considered in by many authors, see, for example, Casher
et al. (1997), Kiem and Verlinde (1995), and ’t Hooft (1985). The novelty of the
treatment presented below lies in the treatment of Eq. (14) when the state ofφ+ is
vacuum.

Before proceeding, let us first relate (11) to Hawking’s approach (Hawking,
1975) and the semiclassical treatment. Hawking’s approach is recovered by putting
Gµ+ = 0. ThenZ factorizes asZ+Z− (upon ignoring the trace anomaly) andφ−
is a free outgoing field propagating in the (fixed) background geometryg. Thus
φ+ drops out from all matrix elements built with the operatorφ−. It should be
emphasized that the trans-Planckian problem (i.e., the fact that matrix elements
such as thein–outGreen function are characterized by trans-Planckian frequencies
when one of the operator approaches the horizon, Barrab`eset al., 2000; Massar
and Parentani, 1996) encountered in Hawking’s approach directly follows from
this factorisability. Indeed it is the absence of coupling tootherdegrees of freedom
which permits the unbounded growth of frequencies upon approaching the horizon.

The semiclassical treatment is generally described by Einstein’s equations
driven by the mean fluxes. This mean field approach can also be obtained from
(11) by splittingDφ asDφ+Dφ−, by integratingfreelyoverφ+ (i.e., by ignoring
the coupling toφ− upon integrating overφ+), and by retaining only themean
〈µ+(v)〉. This mean change is driven through (13) by the (properly subtracted,
Broutet al., 1995a) expectation ofTvv = (∂vφ+)2

〈Tvv(v)〉|r=2M = −π
2

( κ
2π

)2
(15)

evaluated in the unperturbed vacuum (4). This flux has the opposite value of a
2D thermal flux and drives black hole evaporation according to (1). Then, the
path integral overφ− is that a free field propagating in the classical metric (2).
The only change with respect to the fixed background approach of Hawking is
the replacement ofM0 by M0+ G〈µ+〉. Therefore the matrix elements ofφ−,
for example, the Bogoliubov coefficients, are hardly affected (Massar, 1995)
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by the evaporation as long as it is slow, that is, as long asM(v)À MPlanck.
Therefore, in the semiclassical scenario, the trans-Planckian problem stays as
in Hawking’s approach: the coupling betweenφ− and the mean change〈µ+〉 is
incapable to provide a taming mechanism since it does not open new interacting
channels.

To solve this problem clearly requires to take into account thefluctuating
character of the interactions betweenφ− andφ+, that is, the possibility of entan-
gling their wave functions. As we shall see, in a perturbative approach, the relevant
fluctuations are encoded in the moments ofTvv higher than its mean (15) but still
evaluated in the unperturbed vacuum (4).

5. THE MODIFIED MATRIX ELEMENTS OF φ−

Our aim is to see how the matrix elements ofφ− are affected by their cou-
pling to φ+ in its vacuum state. The computation of these elements requires the
integration overφ+ in (11). This integration will determine the influence func-
tional (IF) (Feynman and Hibbs, 1965) governing the effective dynamics ofφ−.
In spite of the fact that the integration overφ+ is Gaussian it cannot be performed
exactly, contrary to that overh in (8). The reason is that the final state ofφ+ will
be correlated to that ofφ−.

However, when computing matrix elements ofφ− in the lowest order inG,
this entanglement can be neglected, thereby recovering a situation analog to that
of h in (8). Indeed the back-reaction effects on these matrix elements which occur
through the modification ofφ+ are of higher order inG. This approximation
concerning degrees of freedomnot directly involved in the matrix elements (i.e.,
which factorized out in the absence of interactions) is a common procedure both
in quantum field theory where it gives the vacuum contribution, see Chapter 9
in Feynman and Hibbs (1965), and in statistical mechanics (e.g., thepolaron,
Chapter 11). In our case, in this approximation, the IF gives rise to a nonlocal
action which is a sum of terms containing (∂rφ−)2 and kernels given by the Wick
contractions ofTvv evaluated with (4).12 The first term is quadratic in (∂rφ−)2 and
the kernel is the (connected) two-point function

〈Tvv(v)Tvv(v
′)〉c =

1

16π2

1

(v − v′)4 . (16)

12If we did not make approximation, the Wick contractions ofφ+ would have given rise to a series
in G which starts with (16) and with higher order terms depending onφ−. In this case, (16) would
have become operator-valued (Kiem and Verlinde, 1995) inφ−, thereby obtaining a situation analog
to that of transition amplitudes when enlarging the quantized phase space so as to take into account
recoil effects (Massar and Parentani, 1997; Parentani, 1995).
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Using (13), one obtains

〈µ+(v)µ+(v′)〉 = 1

96π2

1

(v − v′)2

= 1

96π2

∫ ∞
0

dωω cos[ω(v − v′)]. (17)

This equation gives the mean metric fluctuations driven byφ+ in the unperturbed
(G = 0) vacuum state, see Martin and Verdaguer (2000) for a general study of
two-point functions of induced metric fluctuations.

Keeping only this term in the IF is equivalent to work with a stochastic (i.e.,
a classically given) Gaussian ensemble of metric fluctuations.13 By equivalent we
mean that all matrix elements of operators built withφ− can be computed from
this stochastic theory. This possibility occurs precisely because we excluded the
correction terms in powers ofG which are operator valued inφ−.

In what follows we shall focus on thein–outand thein–in Green function of
φ−. Then, because of the Gaussianity of the stochastic ensemble and the conformal
invariance of (6), one can obtain (Barrab`eset al., 2000) the nonlinear effects inG
from the characteristics of the equation forφ−[

2∂v +
(

1− 2M0+ 2Gµ+(v)

r

)
∂r

]
φ− = 0. (18)

These are the outgoing null geodesicsu(v, r ), solutions ofds2 = 0 of (9). The
background solution isu0 = v − 2r ∗. The first order changeδu = u− u0 is
determined by a nonhomogeneous equation14 whose solution is

δu(v)|u0 = G
∫ ∞

v
dv′

2µ+(v′)
r (v′)|u0 − 2M0

(19)

wherer (v)|u0 is obtained by invertingu0(v, r ) = v − 2r ∗. The important point
for what follows is that the integral in (19) is dominated by the near horizon
region wherer (v)|u0 − 2M0 ' 2M0 eκ(v−u). This dependence ineκu will reduce
the gravitational effects due to UV part of the spectrum of metric fluctuations.

To determine the physical effects of these fluctuations, let us first analyze the
asymptotic plane waves representing Hawking quanta. In the absence of metric

13This approximation can also be expressed in terms of classes of Feynman diagrams. To sort them out
is useful to considerN copies ofφ+. Then the semi-classical treatment consists in keeping all graphs
which are weithed by powers ofGN. This is well known, see, for example, Hartle and Horowitz
(1981). Similarly, the quadratic approximation based on (16) consists in keeping graphs weithed by
powers ofG2N. This approach based on Feynman diagrams is currently under examination and will
be published elsewhere.

14This equation is easily obtained from the fact that 2∂v + (1− 2M0/r ) ∂r defines 2∂v|u0 (by definition
of the outgoing null geodesicsu0 (v, r ) = constant). Indeed the first order change inu obeys the
nonhomogeneous equation∂v|u0δu = (µ+/r )∂r |vu0 thereby giving (19).
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fluctuations the plane wavee−iλu behaves near the horizon as

e−iλu0(v,r ) ' θ (r − 2M0) e−iλv(r − 2M0)i κλ. (20)

It vanishes forr < 2M0 and possesses an infinite number of oscillations as
r → 2M0 with increasing momentumpr = −i ∂r . This is the trans-Planckian
problem.

In a Gaussian ensemble of metric fluctuations the dominant—see Appendix A
in Barrabèset al. (2000)—part of the ensemble average waves is given by

〈e−iλu(v,r )〉 ' e−iλu0(v,r ) e−
λ2

2 〈δu(v)δu(v)〉. (21)

Using (17) and (19), one obtains

〈δu(v)|u0δu(v)|u0〉 = G2
∫ 3

0

dω

3

κ2ω

κ2+ ω2

1

(r/2M0− 1)2

= σ̄ 2
3

1

(r/2M0− 1)2
(22)

where the spread ¯σ3 is equal toGκ

√
ln(3/κ)/3. We have introduced the UV cutoff

3 to define the integral overω. Notice that3 is a Lorentz scalar, since it is the
energy of an s-wave in its rest frame. Notice also that its value is hardly relevant
sinceσ̄3=M =

√
2σ̄3=1.

The main result of (22) is that ¯σ3 is not proportional to3 even though
〈µ2
+〉 ' 32. This is because high frequencies (ω À κ) are damped by the integra-

tion overv′ in (19). The frequenciesω ' κ dominate in (22).
Since〈δu δu〉 diverges asr → 2M0, (21) tells us that the correlations between

asymptotic quanta and early configurations, which existed in a given background
as shown in (20), are washed out by the metric fluctuations oncer − 2M0 ' σ̄3 '
1/M0. The physical reason of this loss of coherence is that the state ofφ+ becomes
correlated to that ofφ− (Kiem and Verlinde, 1995; ’t Hooft, 1985). Phenomeno-
logically this loss can be viewed as a dissipation of outgoing waves. Then, as in
condensed matter (Jacobson, 1991; Unruh, 1981), it one can be approximatively
included in the wave equation through a nontrivial dispersion relation (Barrab`es
et al., 2000).

We should now explain what is the physical relevance of these results. This
is a subtle question. It requires to identify the matrix elements ofφ− governed by
the ensemble averaged waves (21) and those which aren’t. The simplest example
of an operator governed by (21) is provided by thein–outGreen function with one
operator atv, r , and the other onJ +. Indeed since the “second” point lives onJ +
where theout vacuum was defined, the phase of the out-wave function evaluated
at fixedu is not affected by metric fluctuations. On the contrary that of the wave
function evaluated near the horizon atv, r is sensitive to the metric fluctuations



P1: GCV/FYJ

International Journal of Theoretical Physics [ijtp] PP238-343984 November 1, 2001 9:28 Style file version Nov. 19th, 1999

2214 Parentani

encountered fromJ + to where it lives.15 It is this (unusual, see ahead) discrepancy
in the modification of the phase at each point which explains why the ensemble
averaged one-point waves (21) govern this two-point Green function.

It should indeed be emphasized thatusualexpectation values, as for instance
the in–in Green function with two points evaluated at fixedu on J +, arenot
governed by the ensemble averaged waves (21). The reason is that the ensemble
average is performed after having computed the operator for each member of the
ensemble. (This is not a choice: our stochastic classical ensemble is merely a tool to
reproducequantum mechanical expectation values. This quantum origin fixes the
rules of the ensemble averaging without ambiguity.) In our case, this implies that
the shift (19) affectscoherentlythe phase at each point (Barrab`eset al., 2000).
This is important since it guarantees that the shift drops out in the coincidence
point limit. This cancellation in turn guarantees that the asymptotic properties
are unaffected since the Green function possesses the usual Hadamard singularity
(Freedenhagen and Haag, 1990).

We would like to point out that the fact that the metric fluctuation affect very
differently these matrix elements can be considered as providing weight to the
“complementarity” principle (Kiem and Verlinde, 1995), that is, to the fact that
the physics as seen by infalling observers differs from that reconstructed from
observers at large distance from the hole. Indeed, the above mentioned difference
of the impact of gravitational interactions follows from the fact that asymptotic
observers inevitably useout-states to probe the physics. Therefore, the overlaps
they consider will be automatically of thein–outtype since the Heisenberg state of
the field is specified (prepared) before the collapse. It is this two-states formalism
giving rise to nondiagonal matrix elements (Massar and Parentani, 1996) (exactly
like in a S-matrix formulation, ’t Hooft, 1985) which is at the origin of this differ-
ence: the metric fluctuations cannot affect coherently configurations specified in
the “ket” onJ − and in the “bra” onJ +.

6. CONCLUSIONS

We have studied the effects induced by the gravitational interactions governed
by (14). Even though we worked out only the lowest order inG(σ̄3 ∝ G) we

15The cautious reader might wonder if the effects we are describing are not induced by the choice of
working at fixedu or at fixedv, r . To waive his qualms, we would like to recall that Green functions
have no physical meaning per se, rather they are elements which appear in integrals describing
transition amplitudes (for a discussion of this point in a quantum gravitational context see Section 2
in Parentani (1997). It is through this channel that one can verify thatu is a physically meaningful
coordinate onJ + sincedu|r = dt wheredt is the proper time of a particle detector onJ +. Indeed
when additional quantum mechanical systems are coupled to the radiation field, the matrix elements
governing transition amplitudes will have, in their integrand, phase factors behaving likee−iλu in any
coordinate system. Similarly, upon questioning what an infalling observer might see when crossing
the horizon,v, r are meaningful sincedr|v ∝ dτ wheredτ is the proper time of the free falling guy.
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believe that the five results listed in the first section are robust. We see no reason
for higher order terms tosuppressthe entanglement ofφ− with φ+ so as to give
σ̄3 = 0 therebyrecoveringtrans-Planckian correlations. Indeed the modifications
to (16) and (17) should be of the type (Gω2)

n
or (ω/3)m and therefore will not

affect the low frequency behaviour of (17) thereby leaving the effective spread ¯σ3
essentially untouched. Moreover, when considering the effects of higher angular
momentum modes, as indicating by Casheret al. (1997), σ̄ will be larger than
our estimate based on s-modes only. In brief, we claim that the entanglement of
φ− with φ+ is unavoidable given the fact that gravitational interactions grow with
the energy. The entanglement will prevent the unbounded growth of frequencies
encountered in the free field theory and will be accompanied by the reorganization
of the description of vacuum in terms of free states. By this we mean that the usual
states of the free field theory, giving rise to the notion of on-shell particles, provide
bad approximations of the true “normal” modes of the interacting theory when
approaching the horizon. It is this growing orthogonality asr → 2M which leads
to the dissipative-like behaviour (21).
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